Research groups
Retinal Neurobiology Rresearch Group
Béla Völgyi (associate professor) E-mail:
Tel.: +36 72-503-600 (ext: 29045)
Research interest

Over 85% of the information perceived by our nervous system is processed by the retina, thus it is essential to understand how the retinal neuronal hyper-network works. Electrical synapses have been known for some 40 years, however their crucial role in visual information processing has only become obvious in recent years. Our team performs experiments to show that electrically coupled retinal neuronal networks play important roles in higher visual functions. We examine the expressional changes of the gap junction forming connexin proteins during the postnatal development and/or induced by changes in the environment. Our work particularly focuses on those inner retinal gap junctions that are formed by ganglion and amacrine cells (ganglion-ganglion, amacrine-amacrine and amacrine-ganglion). In addition, we are interested in encoding mechanisms retinal microcircuits perform prior to sending the visual information to visual centers of the brain. We study such information encoding mechanisms in the mouse retina/superior collicle axis via a combination of methodological approaches including, histology, various forms of electrophysiology, molecular biology and behavioral tests.


Clinical relevance

age related macular degeneration, rethinitis pigmentosa, diabetic retinopathy

60 channels Multichannels System MEA recording system
Axon 200B based patch-clamp electrophysiology rig
BioRad PCR
Leica CM1860 cryostat
MTI DAGE extracellular recording system
4096 channels High Density MEA BioCam X recording system
in vitro Ca++ -imaging systems
OKN, open field and visual cliff behavioral tests for mice
Confocal Laser Scanning Microscopy (CLSM)
GMO and transgenic techniques
In vitro Ca++ imaging
Patch-clamp electrophysiology
Real-Time Polymerase Chain Reaction (RT-PCR)
Single electrode and multielectrode extracellular recording
Single-cell intracellular electrophysiology
Superresolution microscopy
Visual stimulation and optogenetics
Western blot
Representative publications
Transience of the Retinal Output Is Determined by a Great Variety of Circuit Elements Ganczer A, Szarka G, Balogh M, Hoffmann G, Tengölics ÁJ, Kenyon G, Kovács-Öller T, Völgyi B.
Cells ()
Response Latency Tuning by Retinal Circuits Modulates Signal Efficiency Tengölics Á, Szarka G, Ganczer A, Kovács-Öller T, Völgyi B
Scientific Reports ()
Strategic Positioning of Connexin36 Gap Junctions Across Human Retinal Ganglion Cell Dendritic Arbors Kántor O, Szarka G, Benkő Z, Somogyvári Z, Pálfi E, Baksa G, Rácz G, Nitschke R, Debertin G, Völgyi B
Gap junction-mediated death of retinal neurons is connexin and insult specific: a potential target for neuroprotection Akopian A, Atlasz T, Pan F, Wong S, Zhang Y, Völgyi B, Paul DL, Bloomfield SA
Journal of Neuroscience ()
Gap junctional coupling in the vertebrate retina: Variations on one theme? Volgyi B., Kovacs-Oller T., Atlasz T., Wilhelm M., Gabriel R.
Progress in Retinal and Eye Research (2013/34: 1-18.)
DOI | PubMed | Scopus

OTKA NN 129190; Encoding visual features by retinal ganglion cell oscillatory activit; funded by the Hungarian Academy of Sciences. 2018-2024

ERA-NET COFOUND, (2019-2.1.7-ERANET-2021-00018); Gap junctions serve to distribute health-signals among neurons of the diseased retina; Neuron066 under the Horizon2020 action. 2021 – 2024 

 NKFIH, Projekt ID#: TKP2021-EGA-16; grant ID#: TKP2021-EGA; Az agy működésének és betegségeinek vizsgálata multidiszciplináris megközelítéssel. 2022 –